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Abstract

The N = 1 superconformal circle theory consisting of a free boson and a
free fermion is considered. At any radius the theory has standard Dirichlet
and Neumann branes, but for rational radii there are additional superconformal
boundary conditions that are labelled by elements in a quotient of SU(2). We
analyse how these branes behave under the radius-changing bulk perturbation.
As in the bosonic case, the bulk perturbation induces in general a boundary RG
flow whose end point is a superposition of Dirichlet or Neumann branes.

PACS numbers: 11.25.−w, 11.25.Hf, 11.30.Pb

1. Introduction

Many closed string backgrounds possess moduli that allow one to change the shape and size
of the background geometry. Furthermore, the possible D-branes of a given background also
typically form a moduli space [1]. Obviously, these two moduli spaces are not unrelated: the
moduli space of D-branes typically depends on where one sits in the closed string moduli space,
and conversely, D-branes backreact on the geometry and may have an impact on whether some
of the closed string moduli may get lifted. It is clearly an important question to understand in
some detail how these two moduli spaces are related to one another.

Recently, some progress has been made by studying this question from a conformal field
theory point of view. As was shown in [2, 3], an exactly marginal bulk operator (describing
a bulk deformation) can cease to be exactly marginal in the presence of a boundary. If this is
the case, it induces a non-trivial RG flow on the boundary that drives the boundary condition
to one that is compatible with the deformed closed string background.

As an example, this process was studied for the case of a single free boson in [2]. The
moduli space of D-branes for this theory depends crucially on the radius of the circle [4–6]:
for all radii there are Neumann and Dirichlet branes, but if the radius is a rational multiple
of the self-dual radius, there is an additional three-dimensional branch of the moduli space
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of conformal D-branes. On the other hand, for irrational multiples of the self-dual radius,
the additional branch of the moduli space is only one dimensional. The structure of the full
moduli space of conformal D-branes thus changes very discontinuously as one varies the
radius of the circle theory. In fact, if one starts with a generic brane at a rational point, then
the radius-changing bulk perturbation is not exactly marginal, but rather induces a non-trivial
RG flow on the boundary. In the example at hand, this RG flow could be solved exactly (using
the equivalence of the theory at the self-dual radius to the SU(2) WZW model at k = 1), and
the end point of the flow could be determined [2]: if the radius is increased, a generic brane
always flows to a (superposition of) Dirichlet branes, while if the radius is decreased, the end
point of the flow is a (superposition of) Neumann branes.

In this paper we study the N = 1 supersymmetric analogue of this problem. The moduli
space of N = 1 superconformal branes for the free boson and fermion theory has a similar
structure as in the bosonic case [4, 7], and there is also a close relation to the SU(2) WZW
model, this time at k = 2 [8, 9]3. However, there are also some differences: the WZW model
description only applies to the superaffine theory at R = 1 (not one of the circle theories), and
one needs to keep track carefully of the GSO-projection. As we shall show, one can overcome
these difficulties and obtain as complete a picture as in the bosonic example. In particular, one
finds that generic branes flow to superpositions of Dirichlet or Neumann branes as the radius
of the circle is increased or decreased, respectively.

Bulk-induced boundary perturbations have also been discussed in [11–14], as well as in
the context of defect operators [15, 16]. The backreaction effect has also been analysed from
this point of view in [17].

This paper is organized as follows. In section 2 we briefly review the salient features of
the bosonic analysis. Section 3 explains how the N = 1 free boson and free fermion theory is
related to the WZW model at k = 2, and the corresponding boundary states are identified in
section 4. In section 5 we then put everything together and deduce the RG flow of the N = 1
superconformal branes from the WZW analysis. Section 6 contains our conclusions. There is
one appendix containing some technical calculation.

2. Review of the bosonic analysis

Let us begin by reviewing briefly the analysis in the bosonic case. We consider the c = 1
conformal field theory of a single free boson compactified at a radius R. At the self-dual radius
R = 1/

√
2—in our conventions α′ = 1

2 —the theory is equivalent to the SU(2) WZW model
at level 1, where the left-moving currents are expressed in terms of the left-moving free boson
field XL as

J 3(z) := i
√

2∂zXL(z), J±(z) := : exp(±2
√

2iXL(z)), (2.1)

and similarly for the right-movers such as J̄ 3 = −i
√

2∂z̄XR . It was shown in [18] that the
full moduli space of conformal boundary conditions for this theory is precisely the group
manifold SU(2). The corresponding boundary conditions preserve the SU(2) affine symmetry
up to conjugation by a group element; we choose the conventions that the boundary condition
labelled by g satisfies the gluing condition(

Ad(g·ι)
(
J a

n

)
+ J̄ a

−n

)‖g〉〉WZW = 0, (2.2)

where ι is the SU(2) matrix ι := ( 0 1
−1 0

)
, and Ad denotes the adjoint representation of SU(2).

In these conventions, a diagonal group element describes a Dirichlet brane, while off-diagonal
group elements correspond to Neumann branes.

3 The rational boundary states for all multicritical points were also constructed in [10].
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If the radius of the circle is a rational multiple of the self-dual radius, R = M
N

1√
2
, then the

conformal boundary conditions are labelled by elements in the quotient space SU(2)/ZM ×ZN .
In addition, there are also the usual Dirichlet and Neumann branes (that exist at any radius).
On the other hand, if the radius is an irrational multiple of the self-dual radius, the moduli
space of boundary conditions is much smaller [4–6].

In the bulk theory, the radius R is a modulus of the theory, i.e. it corresponds to an exactly
marginal bulk operator �. Changing the radius then corresponds to the perturbation of the
action by

SδR = λ

∫
d2z �(z, z̄) = λ

∫
d2z J 3(z)J̄ 3(z̄) = 2λ

∫
d2z ∂zX∂z̄X, (2.3)

where in our conventions λ > 0 means that the radius R is decreased. As we have mentioned
above, the moduli space of D-branes depends in a very discontinuous manner on the radius,
and thus the effect of this bulk perturbation on the boundary conditions must be non-trivial.
This question was studied in [2], where it was shown that the above bulk perturbation is not
necessarily exactly marginal in the presence of a boundary, but rather induces in general a
non-trivial RG flow on the boundary. If we denote the boundary coupling constants by μk ,
then the relevant RG equations are of the form

μ̇k = (1 − hk)μk + 1
2B�kλ + Dijkμiμj + O(μλ,μ3, λ2). (2.4)

Here hk is the conformal dimension of the boundary field corresponding to μk—in our case
the boundary fields of interest are just the currents whose conformal dimension is equal to
1—while B�k denotes the bulk-boundary coupling constant of the perturbing bulk field �, and
Dijk are the boundary OPE coefficients. For the case at hand, the bulk boundary coefficient
could be determined explicitly as4

B�γ = i Tr(tγ [t3, gt3g−1]), (2.5)

where tα are the generators of the Lie algebra SU(2), and γ labels the boundary current J γ ,
while the group element g characterizes the boundary condition in question. To first order in
the bulk perturbation, the induced boundary RG flow only changes the group element g, and
it is then possible to integrate up the induced boundary flow completely (to first order in λ). If
we label the group elements in SU(2) as

g =
(

eiφ cos θ ieiψ sin θ

ie−iψ sin θ e−iφ cos θ

)
, (2.6)

then the brane flow only affects θ ; if the radius is increased (decreased) the brane labelled by
g flows to a pure Dirichlet (Neumann) brane whose value of φ (ψ) is unchanged.

3. Equivalence of bulk theories

In the following we want to repeat this analysis for the N = 1 superconformal field theory
consisting of a free boson and a free fermion. As we have seen above, the bosonic analysis
was simplest in the WZW description of the theory. In the superconformal case, there is also
a direct relation to a WZW model—this time the SU(2) WZW model at level 2—and it will
again be convenient to use this formulation of the theory. In the superconformal context the
WZW model is not directly equivalent to the theory of a free boson and fermion, but rather to
the so-called superaffine theory [8].

4 Because the boundary conditions are labelled with the inclusion of ι, there is now a different sign compared to [2].
Note however that in our conventions λ > 0 corresponds to decreasing the radius.
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Let us first describe the WZW model in some detail. It is well known that the SU(2) level
2 theory has a free field realization in terms of three free Majorana fermions, see for example
[19]. Let us denote the corresponding fermion fields as ψa(z), where a denotes the adjoint
representation of SU(2), and we have the commutation relations{

ψa
r , ψb

s

} = δr,−sδ
ab. (3.1)

Then the WZW currents are given as

J a(z) = − i

2
εabc : ψb(z)ψc(z) : ⇐⇒ J a

n = − i

2

∑
r

εabc : ψb
n−rψ

c
r :, (3.2)

where εabc is the totally antisymmetric tensor in three dimensions.
At level 2, the possible representations of the SU(2) affine algebra are Hj with j = 0, 1

2 , 1,
and the complete space of states is of the form

HWZW = (H0 ⊗ H̄0) ⊕ (
H 1

2
⊗ H̄ 1

2

) ⊕ (H1 ⊗ H̄1). (3.3)

In terms of the free fermion description, the first and last terms arise from the NS–NS sector,
while the middle term (the representation j = 1

2 ) corresponds to the R–R sector. Each of

these sectors is moded out by the GSO-projection 1
2 (1 + (−1)F+F̃ ); in fact, we have the simple

relation between the ˆsu(2)2 characters

χj=0(q) = f3(q)3 + f4(q)3

2
, χj=1(q) = f3(q)3 − f4(q)3

2
, χj= 1

2
(q) = 1√

2
f2(q)3,

(3.4)

where the functions fi(q) are the usual functions of [20] that describe the characters of free
fermion representations, see (A.2).

This WZW model is now equivalent to the so-called superaffine theory that is defined as
a Z2 orbifold of the free boson and fermion circle theory at radius R = 1 [8]. Let us denote
the modes of the boson field X of the circle theory by αm and ᾱm, while the modes of the free
fermion fields χ(z) and χ̄ (z̄) are denoted by χr and χ̄r ; the commutation relations are

[αm, αn] = mδm,−n, [αm, χr ] = 0, {χr, χs} = δr,−s (3.5)

and similarly for the right-moving modes. The orbifold acts as

S = (X 
→ X + πR) × (−1)Fst , (3.6)

and Fst denotes the left-moving spacetime fermion number, such that (−1)Fst acts as +1 (−1)

on the NS–NS (R–R) sector. In the untwisted sector of this orbifold, the left- and right-moving
momenta are thus of the form

untwisted: (pL, pR) =
(

k

2
+ w,

k

2
− w

)
,

{
k ∈ 2Z, w ∈ Z: NSNS

k ∈ 2Z − 1, w ∈ Z: RR,
(3.7)

while in the twisted sector we have instead

twisted: (pL, pR) =
(

k

2
+ w,

k

2
− w

)
,

{
k ∈ 2Z − 1, w ∈ Z − 1

2 : NSNS

k ∈ 2Z, w ∈ Z − 1
2 : RR.

(3.8)

In the twisted sector the GSO-projection is reversed; thus in the twisted NS–NS sector the
momentum ground state is now odd under the GSO-projection.

It is instructive to understand how the currents of the WZW description appear in the
superaffine orbifold. First we observe that the currents ∂X and ∂̄X are invariant under the
orbifold projection; they correspond to the two currents J 3 and J̄ 3 in the WZW language.
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The other currents of the WZW theory arise as the fermionic descendants of the momentum
ground states of the twisted sector

J± ⇐⇒ χ−1/2|(pL = ±1, pR = 0)〉, J̄± ⇐⇒ χ̄−1/2|(pL = 0, pR = ±1)〉.
(3.9)

It is also fairly straightforward to show that the partition function of the WZW model agrees
with that of the superaffine theory. This is most easily seen by writing the WZW model
partition function in terms of free fermion characters

ZWZW(q, q̄) = 1
2 (|f3(q)|6 + |f4(q)|6 + |f2(q)|6), (3.10)

as follows from (3.4). On the other hand, using the sum representations of the theta functions,
one can show that (3.10) agrees with the partition function coming from the momentum lattices
(3.7) and (3.8).

Finally, we note that we can also obtain the circle theory from the superaffine theory by
doing the ‘quantum orbifold’. In the present case this is the winding shift orbifold

S̃ =
(

X̃ 
→ X̃ +
π

R

)
, (3.11)

where X̃ is the dual coordinate, i.e. X̃ = XL − XR , see also [9].

4. Boundary conditions

In order to analyse the bulk-induced boundary flow for the N = 1 circle theory, we shall
proceed in two steps. We shall first analyse the situation for the superaffine theory (which is
equivalent to the WZW model at level 2), and then deduce from this the results for the circle
theory at radius R = 1 by considering the circle theory as the Z2 orbifold of the superaffine
theory. In order to translate between the different descriptions, we first need to understand the
dictionary between the brane descriptions in the different setups in some detail; some aspects
of this were already analysed in [9].

4.1. Branes in the superaffine theory

We first review the description of the superaffine branes from [9]. We are interested in the
branes ‖B〉〉 that preserve the superconformal (but not necessarily any larger) symmetry. The
corresponding gluing conditions read

(Ln − L̄−n)‖B〉〉 = 0 = (Gr + iηḠ−r )‖B〉〉, (4.1)

where G (and Ḡ) denotes the supercurrent of the N = 1 superconformal algebra—we use the
same conventions as in [4]—and η = ± labels the two possible choices for the N = 1 gluing
conditions.

As explained in [9], the Ishibashi states [21] of the superaffine theory at R = 1 are labelled
by the usual triplets (j ;m, n), where j is a non-negative half-integer, while |m|, |n| � j with
j − m, j − n ∈ Z, together with the sign η = ±. In the NS–NS sector all combinations with
j integer appear, while j is half-integer in the R–R sector. We also choose the convention
(as in [9]) that the R–R sector Ishibashi states are only GSO-invariant for η = −. With these
preparations we can then give an explicit formula for the boundary states of the superaffine
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theory. Depending on the choice of η we have

‖g;−〉〉sa = 1√
2

⎛
⎝ ∑

(j,m,n)∈INS

Dj
m,n(g)|j ;m, n;−〉〉NS +

∑
(j,m,n)∈IR

Dj
m,n(g)|j ;m, n;−〉〉R

⎞
⎠

‖g; +〉〉sa =
∑

(j,m,n)∈INS

Dj
m,n(g)|j ;m, n; +〉〉NS,

(4.2)

where D
j
m,n(g) denotes the (m, n)-matrix element of g in the spin j representation. Here

INS contains all the integer spin triplets (j ;m, n), whereas IR covers all the half-integer spin
cases.

We shall often refer to the first family of branes (η = −) as the BPS branes, while the
second family (η = +) will be called non-BPS. It is easy to see that the moduli space of
the BPS branes is precisely SU(2), i.e. branes corresponding to different group elements are
indeed different. On the other hand, for η = +, the boundary states corresponding to g1 and
g2 with g2 = −g1 are identical, and thus the moduli space is in fact SO(3) = SU(2)/Z2.

In general these boundary states only preserve the superconformal symmetry, but there
are special cases that actually preserve more. In particular, one easily checks that

(αn − ᾱ−n)
∥∥(eiφ 0

0 e−iφ

); η
〉〉

sa = (χr + iηχ̄−r )
∥∥(eiφ 0

0 e−iφ

); η
〉〉

sa = 0

(αn + ᾱ−n)
∥∥( 0 ieiψ

ie−iψ 0

); η
〉〉

sa = (χr − iηχ̄−r )
∥∥( 0 ieiψ

ie−iψ 0

); η
〉〉

sa = 0.
(4.3)

The branes associated with off-diagonal group elements are single Neumann branes, while
for diagonal group elements they always describe a superposition of two Dirichlet branes
at opposite points on the circle; in the BPS case (η = −), the two Dirichlet branes are a
brane-anti-brane pair, while in the non-BPS case (η = +) the two Dirichlet branes are both
non-BPS branes. From the point of view of the superaffine theory, both of these configurations
are however fundamental, i.e. cannot be resolved into more elementary branes.

As we mentioned before, the superaffine theory is the Z2 orbifold of the circle theory, and
vice versa. Given the branes of either theory, we can obtain the branes of the other theory by
the usual orbifold construction. This was explained in detail in [9].

4.2. The WZW description

As we shall now explain, all of these branes correspond to D-branes of the WZW model that
preserve the affine symmetry up to conjugation, i.e. they satisfy(

Ad(g·ι)
(
J a

n

)
+ J̄ a

−n

)‖g〉〉WZW = 0. (4.4)

It is straightforward to construct the corresponding boundary states following [22]. The
relevant Ishibashi states are simply obtained from the usual (g = ι−1) Ishibashi states by
the action of (g · ι); thus we have three families of Ishibashi states |g; j 〉〉, coming from the
three different sectors j = 0, 1

2 , 1 of the theory. Expressed in terms of the Ishibashi states
of the superaffine theory labelled by (j,m, n), the relation is

|g; 0〉〉 + |g; 1〉〉 =
∑

(j,m,n)∈INS

Dj
m,n(g)|j ;m, n;−〉〉NS

|g; 0〉〉 − |g; 1〉〉 =
∑

(j,m,n)∈INS

Dj
m,n(g)|j ;m, n; +〉〉NS

∣∣g; 1
2

〉〉 = 2− 1
4

∑
(j,m,n)∈IR

Dj
m,n(g)|j ;m, n;−〉〉R. (4.5)
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Given the description of the Ishibashi states, it is then straightforward to construct
boundary states following [22]. Using the explicit form of the S-matrix for SU(2) at level 2,

Sj,j ′ =

⎛
⎜⎜⎝

1
2

1√
2

1
2

1√
2

0 − 1√
2

1
2 − 1√

2
1
2

⎞
⎟⎟⎠ , (4.6)

the consistent boundary states are

‖g; 0〉〉WZW = 1√
2
(|g; 0〉〉 + |g; 1〉〉) +

1

2
1
4

∣∣g; 1
2

〉〉 = ‖g;−〉〉sa∥∥g; 1
2

〉〉
WZW = |g; 0〉〉 − |g; 1〉〉= ‖g; +〉〉sa (4.7)

‖g; 1〉〉WZW = 1√
2
(|g; 0〉〉 + |g; 1〉〉) − 1

2
1
4

∣∣g; 1
2

〉〉 = ‖−g;−〉〉sa.

Note that the first and last line are compatible, since one knows on general grounds (see for
example [2]) that

‖g; j 〉〉WZW = ∥∥−g; k
2 − j

〉〉
WZW, (4.8)

in agreement with the identification in terms of superaffine branes. Applied to j = 1
2 , this

observation also implies that the branes in the middle line are only associated with SO(3) =
SU(2)/Z2. One can also verify that this identification in agreement with the various cylinder
overlaps; this is explained in more detail in the appendix.

Finally, we mention in passing that these branes also have a simple description in terms
of the free fermionic description of the WZW model: the relevant gluing conditions are of the
form (

Ad(g·ι)
(
ψa

r

)
+ iηψ̄a

−r

)‖g; η〉〉ψ = 0. (4.9)

However, this will not be important for the rest of our analysis.

5. The boundary flow

Now we are ready to analyse the boundary flow in these theories. We begin by studying the
branes of the superaffine theory. We are interested in the perturbation by the bulk field

� = J 3J̄ 3 = 4∂zX∂̄z̄X, (5.1)

where the factor of 4 takes into account that the currents are differently normalized at k = 2.
As we have explained above in section 3, J 3 corresponds to the current ∂X of the superaffine
theory that survives the orbifold from the circle theory. Thus � describes indeed the radius-
changing modulus we are interested in. Note that the corresponding state is the G−1/2Ḡ−1/2

descendant of the superconformal primary χ−1/2χ̄−1/2� of conformal dimension h = h̄ = 1
2 .

The perturbation by the corresponding field therefore preserves the N = 1 superconformal
symmetry in the bulk.

5.1. The superaffine case

In terms of the WZW model, the analysis is essentially identical to what was done in [2] and
reviewed in section 2. In fact, the level of the WZW model only enters in a rather trivial way,
namely as an overall factor in front of (2.5), and hence the calculation and the conclusions are
exactly as described there. In terms of the superaffine boundary states, this then implies that∥∥( 0 ieiψ

ie−iψ 0

); η
〉〉

sa
δR<0⇐ ‖g; η〉〉sa

δR>0⇒ ∥∥(eiφ 0
0 e−iφ

); η
〉〉

sa. (5.2)

7



J. Phys. A: Math. Theor. 42 (2009) 115209 M R Gaberdiel and O Schlotterer

As was explained in section 4.1, the diagonal and off-diagonal boundary conditions correspond
to Dirichlet and Neumann branes, whose position and Wilson line is determined by the phase
of the unperturbed SU(2) element. Thus we conclude that the superaffine branes flow to
(a superposition of) Dirichlet or Neumann branes as the radius is increased or decreased,
respectively. This mirrors precisely the result obtained in [2] for the bosonic c = 1 theory.
This conclusion is independent of whether these branes are BPS or non-BPS.

5.2. The circle theory at R = 1

Having understood the boundary flow for the superaffine theory, we can now use the fact that
the circle theory at radius R = 1 is the Z2 orbifold of the superaffine theory, to deduce what
happens in the circle theory. The quantum symmetry by means of which we can obtain the
circle theory from the superaffine theory was already given in (3.11). By construction, this
orbifold projects out the twisted sector of the original S-orbifold; in particular, it removes all
states of half-integer winding from the spectrum (see (3.8)). On the superaffine branes, the
orbifold acts as S̃‖g; η〉〉sa = ‖σ3gσ3; η〉〉sa; the orbifold invariant boundary states (that define
the boundary states of the circle theory) are then [9]

‖g; η〉〉sc = 1√
2
(‖g; η〉〉sa + ‖σ3gσ3; η〉〉sa). (5.3)

Note that the brane associatedwith g is identical to that associatedwith σ3gσ3, and thus the
resulting brane moduli space is SU(2)/Z2 where the Z2 changes the sign of the off-diagonal
entries of g5. Expressed in terms of the parameters of (2.6), conjugation by σ3 simply
corresponds to the shift ψ 
→ ψ + π , but does not affect θ (nor φ). The radius perturbation,
on the other hand, only affects θ , and thus the RG flow is compatible with the S̃ orbifold.
Alternatively, we can think about how the disk correlation functions (from which the bulk
boundary coefficient that appears in the RG equation can be deduced) behave under the
orbifold: since the currents in question live in a sector that is invariant under the orbifold
action, the result is unchanged, and thus the old analysis applies. We can therefore conclude
that ∥∥(

0 ieiψ

ie−iψ 0

); η
〉〉

sc
δR<0⇐ ‖g; η〉〉sc

δR>0⇒ ∥∥(
eiφ 0
0 e−iφ

); η
〉〉

sc. (5.4)

Thus, as before, the superconformal branes of the circle theory flow to Dirichlet or Neumann
branes as the radius is increased or decreased, respectively. There is however now a new
subtlety: the end point of the RG flow is not necessarily a fundamental brane in the circle
theory. For example, for η = −, the resulting diagonal group element (to which the system
flows if the radius is increased) describes a superposition of a BPS Dirichlet brane and anti-
brane at opposite points on the circle, while for η = + the diagonal group element describes
a superposition of two non-BPS Dirichlet branes at opposite points on the circle. Unlike the
situation in the superaffine orbifold, these branes are not fundamental in the circle theory.

5.3. The circle theory at R = M
N

Finally, we want to comment on the situation where the radius of the superconformal circle
theory is rational. As suggested in [2] (see also [23]) in the context of the bosonic analysis, we
can make use of the fact that the circle theory at radius R = M

N
can be obtained as a ZM × ZN

orbifold of the circle theory at radius R = 1. In fact, the relevant orbifold action can be taken
to be

SN :=
(

X 
→ X +
2πR

N

)
, WM :=

(
X̃ 
→ X̃ +

π

RM

)
. (5.5)

5 It is therefore different from the g ≡ −g equivalence in SO(3).
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The branes of the fractional radius theory can then be obtained from the branes at R = 1 in
the usual manner. The only subtlety involves the determination of the fixed points. One finds
that fixed points only appear if N is even: the non-BPS branes (η = +) of the R = 1 theory
are fixed points under SN/2

N . The resolution of these fixed points then leads to the inclusion of
a R–R component in the boundary state, and thus the branes with η = + are BPS for N even.
(On the other hand, the R–R part of the BPS branes at R = 1 is projected out for N even, and
hence the η = − branes are non-BPS.) Thus for even N the roles of the BPS and non-BPS
branes are interchanged, in perfect agreement with what was already found (by some different
reasoning) in [4].

Just like the S̃ orbifold action in section 5.2, the orbifold operators SN and WM act on the
boundary states as g 
→ �Mg�−1

M and g 
→ �Ng�N , respectively, where �L = diag
(
e

iπ
L , e− iπ

L

)
is defined as in [4]. In particular, these operators therefore only act on the phases φ,ψ in (2.6),
but not on the modulus angle θ . (They also leave the sector in which the perturbing field lives
invariant.) Thus as before the radius changing orbifold does not affect the RG flow analysis,
and the result goes through directly. In general, though, the end point of the RG flow will now
be a superposition of a number of Dirichlet or Neumann branes.

6. Conclusions

In this paper we have studied the behaviour of the N = 1 superconformal boundary conditions
of the free boson and free fermion theory at c = 3

2 under the radius-changing bulk deformation.
The results are similar to those that were previously obtained in the bosonic case in [2]: if the
radius is increased, a generic brane flows to a superposition of Dirichlet branes, while the end
point of a radius decreasing perturbation is a superposition of Neumann branes.

As in the bosonic example, our analysis hinged on relating the circle theory to an SU(2)
WZW model for which the RG flow can be solved explicitly. In the present context, the
WZW model in question appears at level k = 2, and it is equivalent to the superaffine theory,
rather than the circle theory directly. In addition, there were some subtleties involving the
GSO-projection.
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Appendix. Comparison of overlaps

In order to identify the boundary states of the superaffine theory with the WZW model it is
useful to compare their overlaps. We begin with the analysis of the superaffine boundary states
given in (4.2). Using the same techniques as in [4] one finds that their overlap equals

sa〈〈g1;−‖qL0− c
24 ‖g2;−〉〉sa = 1

2

∑
n∈Z

(f3(q̃) + (−1)nf4(q̃))
q̃

1
2 (− α

π
+n)2

η(q̃)

sa〈〈g1; +‖qL0− c
24 ‖g2; +〉〉sa = f3(q̃)

∑
n∈Z

q̃
1
2 (− α

π
+n)2

η(q̃)
,

where q̃ is the variable in the open string channel, and

cos(α) = 1
2 Tr

(
g−1

1 g2
)
. (A.1)
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Here we have used the standard fi functions from [20] that are defined as

f2(q) =
√

2q
1

24

∞∏
n=1

(1 + qn) f3(q) = q− 1
48

∞∏
n=1

(
1 + qn+ 1

2
)

f4(q) = q− 1
48

∞∏
n=1

(
1 − qn+ 1

2
)
.

(A.2)

The calculation of the overlap between boundary states corresponding to different values of
η depends on our convention concerning the relative normalization of the NS–NS Ishibashi
states; the convention we have used is that6

NS〈〈j ;m, n; η|qL0− c
24 |j ;m, n;−η〉〉NS = (−1)jf4(q)

q
j2

2 + q
(j+1)2

2

η(q)
. (A.3)

Then one finds that

sa〈〈g1;−‖qL0− c
24 ‖g2; +〉〉sa = f2(q̃)√

2

∑
n∈Z− 1

2

q̃
1
2 (− α

π
+n)2

η(q̃)
. (A.4)

To compare to the usual level 2 WZW characters χj , we take g1 = ±g2. Then one obtains

sa〈〈g;−‖qL0− c
24 ‖g;−〉〉sa = 1

2

∑
n∈Z

(f3(q̃) + (−1)nf4(q̃))
q̃

1
2 n2

η(q̃)
= χj=0(q̃)

sa〈〈g;−‖qL0− c
24 ‖−g;−〉〉sa = 1

2

∑
n∈Z

(f3(q̃) − (−1)nf4(q̃))
q̃

1
2 n2

η(q̃)
= χj=1(q̃)

sa〈〈g; +‖qL0− c
24 ‖g; +〉〉sa =

∑
n∈Z

f3(q̃)
q̃

1
2 n2

η(q̃)
= χj=0(q̃) + χj=1(q̃)

sa〈〈g;−‖qL0− c
24 ‖g; +〉〉sa =

∑
n∈Z− 1

2

f2(q̃)√
2

q̃
1
2 n2

η(q̃)
= χj= 1

2
(q̃),

(A.5)

where we have used standard theta–function identities (see for example [24]) to relate the
expressions to the characters of the WZW model given in (3.4). The expressions on the
right-hand side precisely agree with what one expects, based on the fusion rules of the SU(2)
level 2 theory. It is also not difficult to see how both sides generalize for general g1 and g2.
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